\square

Thanks for downloading this resource!

The zip folder that you've just opened contains a PDF file with interactive features.

In a move towards offering an even more versatile spread of resources, some of our worksheets feature interactive fields that can be filled in on computers and smart devices, without having to print the page. Follow the guidance in the next column for a smooth, stress-free means of accessing this content using free-to-download PDF reading software.

Step 1: Cl Mac (or se the down experience

Step 2: Op
If you are Acrobat R select Adod

the following lin lownload

 -
Step 3: Complete the resource!
For PC/Mac users: To fill in the resou click the text fields and type yoy lswers as needed. Check boxes and radio bu \qquad an simply be clicked ont ake the selection of your choice and for anything else, ill see the quea, markicon which, upon being clicked, will reveal specific instrucr finished with the respource the corresponding question or activity. When you are finished with the resource, go to File > Save As... and save your file in a memorable location.
For smart device users: To fill in the resource, follow the same process as described above. When you are finished, simply press the back button in the top left of the appscreen and your PDF will save automatically.
Remember: Saving your PDF will overwrite the original file, so be sure to create a copy before starting if you wish to keep a blank copy of the resource on your device.
We hope you have found this information useful. If you experience any problems in following the instructions above, please contact the Beyond team at and we will do our best to help with your query.

Your turn

1. Calculate the volume of each shape, giving your answers correct to the nearest whole number where necessary.

$\frac{1}{2} \times 6 \times 3=9 \mathrm{~cm}^{2}$
$9 \times 10=90 \mathrm{~cm}^{3}$
b.

$5 \times 6 \times 12=360 \mathrm{~cm}^{3}$
c.

$2 \times 1.1 \times 1.2=2.64$
$3 \mathrm{~m}^{3}$
d.

$\pi \times 5^{2}=78.53981634 . . . \mathrm{cm}^{2}$
$78.53981634 \ldots \times 3=235.619449 \ldots \mathrm{~cm}^{2}$ $236 \mathrm{~cm}^{3}$

$\frac{1}{2} \times(6+14) \times 4=40 \mathrm{~cm}^{2}$
$40 \times 20=800 \mathrm{~cm}^{3}$
f.

$\pi \times 3.5^{2}=38.48451001 \ldots \mathrm{~m}^{2}$
$38.48451001 \ldots \times 16=615.7521601 \ldots$
$616 \mathrm{~m}^{3}$

$\frac{1}{2} \times 5.5 \times 2.75=7.5625 \mathrm{~cm}^{2}$
$7.5625 \times 16=121 \mathrm{~cm}^{3}$

$\frac{1}{2} \times(5.6+10.2) \times 3=23.7 \mathrm{~cm}^{2}$
$23.7 \times 18.1=428.97$
$429 \mathrm{~cm}^{3}$
2. The volume of the triangular prism is $106 \mathrm{~cm}^{3}$. Calculate the measurement of the missing length marked x.

$\frac{1}{2} \times 4 \times 5=10 \mathrm{~cm}^{2}$
$106 \div 10=10.6$
$x=10.6 \mathrm{~cm}$
3. The volume of the prism shown below is $216 \mathrm{~cm}^{3}$. Calculate the cross-sectional area of the prism.

$216 \div 16=13.5 \mathrm{~cm}^{2}$
4. The cuboid and the triangular prism have the same volume. Calculate the measurement of the missing length marked x.

$\frac{1}{2} \times 6 \times 3.5=10.5 \mathrm{~cm}^{2}$
$10.5 \times 16=168 \mathrm{~cm}^{3}$
$7 \times 2=14 \mathrm{~cm}^{2}$
$168 \div 14=12$
$x=12 \mathrm{~cm}$
5. Boxes of chocolate are placed into a crate. Each box of chocolate is a cuboid and the crate is also a cuboid. Calculate the number of boxes of chocolate which will fit inside the crate.

$60 \div 15=4 \mathrm{~cm}$
$32 \div 8=4 \mathrm{~cm}$
$20 \div 4=5 \mathrm{~cm}$
$4 \times 4 \times 5=80$

80 boxes of chocolate will fit inside of the crate.

Challenge

A fish tank is filled $\frac{3}{4}$ full of water. Joshua pours 1500 ml more water into the fish tank. How many litres of water does the fish tank now contain?

Hint: $1 \mathrm{ml}=1 \mathrm{~cm}^{3}$

$1.5 \mathrm{~m}=150 \mathrm{~cm}$
$0.75 \mathrm{~m}=75 \mathrm{~cm}$
$150 \times 20 \times 75=225000 \mathrm{~cm}^{3}$
$225000 \mathrm{~cm}^{3}=225000 \mathrm{ml}$
$\frac{3}{4} \times 225000=168750 \mathrm{ml}$
$168750+1500=170250 \mathrm{ml}$
170 250ml = 170.25 litres

Volume of Prisms

Prior Knowledge:

Before attempting this sheet, students should be able to:

- calculate the area of a circle $\left(\pi r^{2}\right)$
- round numbers to whole numbers
- calculate the area of:
- triangles ($\frac{1}{2} \times$ base \times height $)$
- rectangles (length \times width)
- squares (length \times width)
- trapeziums $\left(\frac{1}{2} \times(a+b) \times\right.$ height $)$

The volume of a shape is the measure of the three-dimensional space it covers. The units of measurement for volume are cubic units, for example cm^{3} or m^{3}.

A prism is a solid (3D) object which is the same shape all the way through; it has a constant crosssection.

To calculate the volume of a prism, including a circular prism, learn this formula by heart:
Volume $=$ area of cross-section \times length or height

For example, the cross-section of this cuboid is a rectangle.

To calculate the area of the cross-section, it would be length \times width. You would then multiply this by the height, hence the formula: length \times width \times height.

Example 1

Calculate the volume of the prism shown below.

The first step is to calculate the area of the cross-section. In other words, you need to calculate the area of the base of the shape. (The base is always the face which is the same as the crosssection).

This shape is a triangular prism; its base is a triangle. Therefore, you need to calculate the area of the triangle. Remember that the formula for calculating the area of a triangle is $\frac{1}{2} \times$ base \times height.
$\frac{1}{2} \times 5 \times 4=10 \mathrm{~cm}^{2}$

Now that you have the area of the cross-section, multiply it by its length to calculate the volume. $10 \times 12=120 \mathrm{~cm}^{3}$ (Don't forget the units!)

Example 2

Calculate the volume of the cylinder, giving your answer correct to the nearest whole number.

Start by calculating the area of the cross section. In other words - the area of the circle. Remember that the formula for calculating the area of a circle is πr^{2}.
$\pi \times 4^{2}$
$\pi \times 16=50.26548246 \ldots \mathrm{~cm}^{2}$
(It's important that you don't round your answer at this stage - you could also leave your answer in terms of π, e.g. 16π.)

Now, multiply the area of the circle by the height.
$50.26548246 \ldots \times 8=402.1238597 \ldots$

As you don't have any further calculations to do, you should now round the answer to the degree which the question has asked for. In this case, the nearest whole number.
Therefore, the answer is $\mathbf{4 0 2} \mathbf{c m}{ }^{\mathbf{3}}$. (Don't forget the units!)

Your turn

1. Calculate the volume of each shape, giving your answers correct to the nearest whole number where necessary.
a.

e.

b.

f.

c.

d.
h.
5.6 cm

h.

g.

\square
2. The volume of the triangular prism is $106 \mathrm{~cm}^{3}$. Calculate the measurement of the missing length marked x.

\square
3. The volume of the prism shown below is $216 \mathrm{~cm}^{3}$. Calculate the cross-sectional area of the prism.

4. The cuboid and the triangular prism have the same volume. Calculate the measurement of the missing length marked x.

\square
5. Boxes of chocolate are placed into a crate. Each box of chocolate is a cuboid and the crate is also a cuboid. Calculate the number of boxes of chocolate which will fit inside the crate.

\square

Challenge

A fish tank is filled $\frac{3}{4}$ full of water. Joshua pours 1500 ml more water into the fish tank. How many litres of water does the fish tank now contain?

Hint: $1 \mathrm{ml}=1 \mathrm{~cm}^{3}$

\square

Volume of Prisms

Prior Knowledge:

Before attempting this sheet, students should be able to:

- calculate the area of a circle $\left(\pi r^{2}\right)$
- round numbers to whole numbers
- calculate the area of:
- triangles ($\frac{1}{2} \times$ base \times height $)$
- rectangles (length \times width)
- squares (length \times width)
- trapeziums $\left(\frac{1}{2} \times(a+b) \times\right.$ height $)$

The volume of a shape is the measure of the three-dimensional space it covers. The units of measurement for volume are cubic units, for example cm^{3} or m^{3}.

A prism is a solid (3D) object which is the same shape all the way through; it has a constant crosssection.

To calculate the volume of a prism, including a circular prism, learn this formula by heart:
Volume $=$ area of cross-section \times length or height

For example, the cross-section of this cuboid is a rectangle.

To calculate the area of the cross-section, it would be length \times width. You would then multiply this by the height, hence the formula: length \times width \times height.

Example 1

Calculate the volume of the prism shown below.

The first step is to calculate the area of the cross-section. In other words, you need to calculate the area of the base of the shape. (The base is always the face which is the same as the crosssection).

This shape is a triangular prism; its base is a triangle. Therefore, you need to calculate the area of the triangle. Remember that the formula for calculating the area of a triangle is $\frac{1}{2} \times$ base \times height.
$\frac{1}{2} \times 5 \times 4=10 \mathrm{~cm}^{2}$

Now that you have the area of the cross-section, multiply it by its length to calculate the volume. $10 \times 12=120 \mathrm{~cm}^{3}$ (Don't forget the units!)

Example 2

Calculate the volume of the cylinder, giving your answer correct to the nearest whole number.

Start by calculating the area of the cross section. In other words - the area of the circle. Remember that the formula for calculating the area of a circle is πr^{2}.
$\pi \times 4^{2}$
$\pi \times 16=50.26548246 \ldots \mathrm{~cm}^{2}$
(It's important that you don't round your answer at this stage - you could also leave your answer in terms of π, e.g. 16π.)

Now, multiply the area of the circle by the height.
$50.26548246 \ldots \times 8=402.1238597 \ldots$

As you don't have any further calculations to do, you should now round the answer to the degree which the question has asked for. In this case, the nearest whole number.
Therefore, the answer is $\mathbf{4 0 2} \mathbf{c m}{ }^{\mathbf{3}}$. (Don't forget the units!)

Your turn

1. Calculate the volume of each shape, giving your answers correct to the nearest whole number where necessary.
a.

e.

\qquad
\qquad
\qquad
b.

12 cm
f.

\qquad
\qquad
\qquad
c.

\qquad
\qquad
\qquad
d.

h.

\qquad
\qquad
\qquad
\qquad
\qquad
2. The volume of the triangular prism is $106 \mathrm{~cm}^{3}$. Calculate the measurement of the missing length marked x.

\qquad
\qquad
\qquad
3. The volume of the prism shown below is $216 \mathrm{~cm}^{3}$. Calculate the cross-sectional area of the prism.

\qquad
\qquad
\qquad
4. The cuboid and the triangular prism have the same volume. Calculate the measurement of the missing length marked x.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5. Boxes of chocolate are placed into a crate. Each box of chocolate is a cuboid and the crate is also a cuboid. Calculate the number of boxes of chocolate which will fit inside the crate.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Challenge

A fish tank is filled $\frac{3}{4}$ full of water. Joshua pours 1500 ml more water into the fish tank. How many litres of water does the fish tank now contain?

Hint: $1 \mathrm{ml}=1 \mathrm{~cm}^{3}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

